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Abstract

The effects of patch size and land-cover heterogeneity on classification accuracy were evaluated using reference data collected for the
National Land-Cover Data (NLCD) set accuracy assessment. Logistic regression models quantified the relationship between classification
accuracy and these landscape variables for each land-cover class at both the Anderson Levels I and II classification schemes employed in the
NLCD. The general relationships were consistent, with the odds of correctly classifying a pixel increasing as patch size increased and
decreasing as heterogeneity increased. Specific characteristics of these relationships, however, showed considerable diversity among the
various classes. Odds ratios are reported to document these relationships. Interaction between the two landscape variables was not a
significant influence on classification accuracy, indicating that the effect of heterogeneity was not impacted by the sample being ina small or
large patch. Landscape variables remained significant predictors of class-specific accuracy even when adjusted for regional differences in the
mapping and assessmenr processes or landscape characteristics. The land-cover class-specific analyses provide insight into sources of
classification error and a capacity for predicting error based on a pixel's mapped land-cover class, patch size and surrounding land-cover

heterogeneity.
~ 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Maps are increasingly being used to describe the spatial
distribution and pattern of land cover and the impact of
human decisions on the landscape. Such maps rely on data
gathered by the large number of sensors, both aerial and
satellite, that acquire images of the Earth's surface. These
images are converted to land-cover maps through the uti-
lization of any number of classification algorithms that link
recorded digital number values, or some derivative, to
specific land-cover classes (Jensen, 1996, 2000). Effectively
employing these land-cover maps requires evaluating their
accuracy and presenting results to users (Congalton & Green,

1993, 1999; Foody, 2002; Laba et al., 2002; Shao, Liu, &
Zhao, 2001; Wickham, O'Neill, Ritters, Wade, & Jones,
1997; Yang, Stehman, Wickham, Smith, & Van Oriel, 2000).

The standard approach for assessing classification accu-
racy is to select a sample of locations and determining the
reference land cover present using field observations and/or
fine resolution images. An error or confusion matrix is then
formulated to catalog discrepancies between the land-cover
map and the reference data (Congalton, Oderwald, & Mead,
198J; Story & Congahon, 1986). Various measures can then
be derived from this table to report classification accuracy,
including errors of omission and commission, producer's
and user's accuracies and the Kappa coefficient (Congalton
& Green, 1999).

A more thorough analysis of classification error would go
bcyond solcly rclying on the contingency table by incorpo-
rating contextual information, such as landscape character-
istics in the analysis (Hubert-Moy, Cotonnec, Le Ou,
Chardin, & Perez, 2001; Pathirana, 1999; Shao et al.,
2001; Sharma &Sarkar, 1998; Steele, Winne, & Redmond,
1998). Such analyses seek to provide additional insights into
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Table I
Major 1992 national land-cover classes found in regions 1-4

potential causes of classification error and possibly describe
its spatial characteristics.

Patch size and land-cover heterogeneity are examples of
landscape characteristics hypothesized to affect classifica-
tion error (Campbell, 1996). Both result in an increase in the
number of mixed pixels present in the land-cover data set.
Mixed pixels record radiationreflectances arising from more
than one land-cover class. Patch size and land-cover hetero-
geneity also influence classification error by introducing

perceived pixel misclassifications when the land-covet map
and reference data sets are misregistered, causing confusion
as to the land cover actually present at a specific location.

The purpose of this article is to establish land-cover class-
specific relationships between classification accuracy and
two landscape variables, patch size and land-cover hetero-

geneity. Smith, Wickham, Stehman, and Yang (2002) inves-
tigated the effect of these two variables on classification error
in general (i.e., not disaggregated by land-cover class).
Building upon the previous finding that strong relationships
do in fact exist, the current study focuses on evaluating these
relationships for the individual land-cover classes. The
results provide insight into how the accuracy of each land-
cover class varies with changing landscape structure. Fur-
ther, the logistic regression relationships established for each
class provide a useful, qua.litative predictive tool for deter-
mining where classification error is most likely to occur. The
goal is to better illuminate the link between accuracy
information, the land-cover map and the landscape being
studied.

Level I Level" Class Definition

20 21 Low Intensi':Y Mixture of constructed

Residential materials and vegetation,

with the constructed materials

accounting for 30- 79% of
the cover.

High Intensi':Y Mixture of constructed
Residential materials and vegetation,

with the constructed materials

accounting for 80-100% of
the cover.

Commercial! Highly developed areas not
Industrial/ classified as high intensi':Y

Transportation residential.
Bare Rock! Perennially barren areas of

Sand/Clay earthen matcrials.
Quarries! Area!; of extractive mining
Strip Mines/ activities with significant
Gravel Pits surface expression.
Transitional Areas of sparse vegetation

cover ( <25%) that are

dynamically changing from
one land cover to another.

Deciduous Forest Areas dominated by trees

in which >75% of the trees
shed foliage spontaneously
in response to seasonal

changcs.
Evergreen Forest Areas dominated by trees

in which >75% of the trees
retain foliage all year.

Mixed forest Areas inhabited by both

deciduous and evergreen
trees with neither comprising

>75% of total tree cover.
Pasture/Hay Areas of grasses, legumes,

or grass-legume mixtures

planted for livestock grazing,
or the production of seed,
or hay crops.

Row Crops Areas used for the production

of crops such as com soybeans,

vegetables, tobacco and cotton.
Urban/Recreational Vegetated areas In developed
Gra!;ses settings set aside for the

purposes of recreation, erosion
control, or aesthetics.

Woody Wetlands Areas with forest, or shrubs

accounting for 25-100% of
the cover and periodically

saturated with water.
Areas with perennial
herbaceous vegetation
accounting for 25-100%
of the cover alld periodically
saturated with water.

22

23

30 31

32

33

40 41

42

43

2. Methodology
80 81

The 1990 National Land-Cover Data (NLCD) set covers
the contenninous United States at a pixel resolution of 30 m

(Vogelmann, Howard, Yang, Larson, Wylie, & ..van Driel,
200 I). Produced by the Multi-Resolution Land Character-
istics (MRLC) consortium (Loveland & Shaw, 1996), the
NLCD was derived from Landsat Thematic Mapper (TM)
images (Vogelmann, Sohl, & Howard, 1998; Vogelmann et
al., 200 I). The NLCD employs a land-cover classification
scheme modeled upon the Anderson, Hardy, Roach, and
Witmer (1976) system at two classification levels (Table 1).

Accuracy assessment of the NLCD set is being imple-
mented by EPA federal region, with reference sample data
utilized in this study encompassing regions I, 2, 3 and 4 (Fig.
I). As a result of the regional progression of accuracy
assessments, different photo-inteIpreter teams acquired the
reference data in each of these four regions. Accuracy
assessment methodology was based on a probability sample
of pixels, with reference land-cover data obtained by inter-
pretation of hard-copy, National Aerial Photography Pro-

gram (NAPP) photographs (Stehman, Wickham, Yang, &
Smith, 2000; Yang, Stehman, Smith, & Wickham, 2001;
Yang et al., 2000; Zhu, Yang, Stehman, & Czaplewski, 1999;
Zhu, Yang, Stehman, & Czaplewski, 2000). A sample pixel

82

85

90 91

92 Emergent
Herbaceous
Wetlands

was considered correctly classified if the primary photo-
interpreted class matched the NLCD class. Other definitions
of agreement have been employed in the reporting ofNLCD
accuracyresu1.ts (Yang et al., 200 I; Zhu et al., 1999).

Two landscape variables, land-cover heterogeneit)rand
patch size, were recorded for each sample pixel. Values fOl
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Fig. 1. Area of classification accuracy

lation and also to impose an upper bound on patch size.
Buffers with a radius of 3000 m were created around the
accuracy assessment sample points and then overlayed upon
both the Levels I and II land-cover data sets, resulting in
circular zones of land cover 200 pixels across. Patch sizes
ranged from 1 to 139,317 pixels. Preliminary analysis of this
data indicated that a transformation to a logarithmic (base
10) scale would improve the linearity of the logistic regres-
sion models. Any further reference to the patch size variable
should be understood as pertaining to the logarithm of patch
size. The characteristics of both landscape variables are
summarized for each of the land-cover classes in Table 2.

In addition to the two landscape variables, three regional
dummy variables were also created and treated as a set in the
statistical analyses. These variables account for potential
regional differences in physiography, photo-interpretation
skills and image classification protocols. Additionally, they
were included to assess whether the effect of the two land-
scape variables could be attributed to their confounding with
regional differences. The final explanatory variable was an
interaction term calculated to equal the product of the
heterogeneity and patch size variables. It was included to
assess whether the two landscape variables interact to
influence classification accuracy.

The dichotomous response variables recorded for each
sample pixel represented whether the pixel was correctly
classified or not. Separate response variables were calcu-
lated for each classification level. Response variables were
coded as 1 if the pixel was correctly classified and 0 if it
was misclassified. Logistic regression was then used to

each variable were obtained for the Level II classification
scheme, which is the basic scheme of the NLCD and the
more generalized Level I scheme (see Table I). Thus, each
sample point had two heterogeneity and two patch size
variable values (one at Level I and another at Level II).

Land-cover heterogeneity was computed to equal the
number of land-cover classes occurring in a 3 x 3 pixel
window centered on the sample pixel. Heterogeneity values
ranged from I, which meant that a single land-cover class
occurred in the window, to 7 for the Level II classification
scheme and from I to 6 for the Level I scheme. A hetero-
geneity value of I indicates that the sample pixel is located
within a homogeneous 3 x 3 block of pixels (an interior
pixel), while any value greater than I indicates that the pixel
was located on a patch edge. In place of this heterogeneity
variable, a simpler dichotomous variable indicating whether
the sample pixel was an interior or edge pixel was also
considered. Based on logistic regression analyses not repor-
tt:d in thi~ articlt:. we found that thi~ dichutumuu~ hett:ro-
geneity variable contributed less to the explanatory ability of
the logistic regression models than did the quantitative
heterogeneity variable for all Levels I and II classes except
for bare rock (31). Consequently, we retained the heteroge-
neity variable for all subsequent analyses.

The other landscape variable, patch size, was calculated to
equal the number of contiguous pixels of the same land-
cover class. Contiguity was defined as occurring when two
pixels of the same class were adjacent, including diagonally,
to one another. A butTering operation was implemented to
efficiently process the land-cover data for patch size calcu-
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Table 2
Description of NLCD land cover at the sample points

2\
22
23
3\
32
33
41

42
43
81
82
85
91
92
20
30
40
80
90

Level II 323
332
320
291
310
305
630
337
449
447
326
326
305
319
975
906

1416
1099
624

38
28
48
33
34
37
48
45
33
33
40
41
33
54
70
43
77
50
55

2.57
2.20
2.68
2.56
2.09

2.25
1.86
2.22
2.41.
2.1.0
2.1.7
2.61.
2.22
2.26
1.74
2.07
1.33
1.76
1.82

1.11
0.98
1.24
1.22
1.25
1.13
0.93
0.99
0.87
1.09
1.10
1.21
1.19
1.35
0.82
0.92
0.56
0.79
0.84

2.65
2.55
2.18
1.90
2.42
2.12
3.47
2.52
2.34

2.78
2.48
1.76
2.59
2.62
3.76
2.19
4.40

3.08
2.86

1..37

1.1.6
1..20
1.02
1.00
1.08
1.40
1.26
1.32
1.27
1..19

1.03
1..39

1..65
1..27
1.00
0.95
1.35
1.50

-0.503

-0.505

-0.534

-0.575

-0.603

-0.564

-0.564

-0.460

-0.503

-0.593

-0.486

-0.592

-0.629

-0.743

-0.484

-0.536

-0.466

-0.551

-0.597

Level I

evaluate relationships between these response variables and
various sets of explanatory variables (i.e., the landscape,
interaction and regional variables). Rather than model
directly the dichotomous response variable, logistic regres-
sion instead models the logarithm of the odds, where the
odds of a correct classification is defined as p/(l -p), with
p being the probability of a correct classification. The
logistic regression model is:

+ fJkXk (1)/n(pj(l -p)) == (X + fJtXI + fJ2X2 +

variables' effects. These models possess a hierarchical struc-
ture such that a model with one or few explanatory variables
(i.e. a reduced model) nests within a more encompassing
model (i.e. a full model) containing the reduced model's
explanatory variables plus one or more additional variables.
Statistical tests were then conducted to deternline if the
additional explanatory variable or variables present in the
full, but not reduced, model contributed a significant
improvement in model fit. That is, the tests evaluated the
marginal contribution of these explanatory variables to a
model already containing other explanatory variables. The
test employs a chi-square statistic derived from differences in
the -2 log likelihood (- 2LL) values for the full and
reduced models (Agresti, 1996; Hosmer & Lemeshow,
19H9). Statistical significance was judged based on a sig-
nificance (tX) level of 0.05.

In the results presented for the single-variable logistic
regression models (Models la and Ib), we rely heavily on
the correspondence between the coefficient PI and the odds
ratio. An odds ratio is defined as:

where iX is the intercept, XI through Xk are explanatory
variables, PI through Pk are the parameters and I'n is the
nattlral logarithm. The model assumes that the response
variable represents the outcome of a Bernoulli trial and
that responses of different sample elements are independ-
ent.

Several logistic regression models (Table 3) were eval-
uated to investigate various features of the explanatory

(Pi/(1 -pl)/p2/(1 -P2)) (2)

where PI and P2 are the probabilities of a correct classifica-
tion at two different levels of explanatory variable x. Odds
ratios provide a convenient metric for assessing the relative
change in the odds ofa correct classification given a one unit
change in .\". An odds ratio of I indicates that no change in the
odds of a corrcct classification is associatcd with a onc unit
change in the explanatory variable. Equivalently, an odds
ratio of I occurs when fJ I = 0, a situation in which the odds of

a correct classification shows no linear relationship with the
explanatory variable. An odds ratio greater than I indicates
that the odds of a correct classification increases as the

0
I"

flo
flo+{1I-tl
flo +P~t2
PO+PI-tl+P~t2

3 P,,+!lI.T.+!l2-T2+PI.2-TI.T2

{ill + {i)-T) + {i+T4 + {isXs + PiPT6

Pu+ /l1.TI + /I:T2 + /1.'(3 + /l4-T4+

/ls.TS + {iiPT6
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variable increases by one unit. Conversely, an odds ratio less
than I indicates a decrease in the odds of a correct classi-
fication when the variable value increases. The magnitude of
the deviation of the odds ratio from I represents the
"strength" of the change in the odds as the explanatory
variable increases by one unit. Alternatively, the deviation of
the estimated odds ratio from I may be interpreted as
representing the "sensitivity" of that land-cover class to
changes in the landscape variable.

Table 5

Results for single-variable logistic regression models (I a and I b) at Levell

Explanatory
variable

Class Parameter
estimates

95% profile likelihood

confidence limits of the
odds ratio

Land-cover

heterogeneity
20 2.4 -0.86 0.35

30
40
80
90
20
30
40
80
90

0.95
3.14
2.21

J.88
~ 1.71

-J;62

-"1.70

-2.29

-1.8M

-0.60 0.47
-1.38 0.20
-1.28 0.23
-0.93 0.31

0./0 1.78
0.60 1.58
0.67 1;72
0.73 1.86
0.73 1.82

0.55
0.25
0.28
0.39
2.01
1.83
1.95
2.08
2.07

0.64
0.3\.
0.34
0.49
2.27
2.13
2.23
2.33
2.37

3. Results Patch size

For single-variable Models la and I b at classification
Level II, both landscape variables were statistically signifi-
cant for all but a few land-cover classes. Land-cover hetero-
geneity was not significant in the low intensity residential
(21) and mixed forest (43) classes, while patch size was not
significant in the pasture/hay (81) class. The general impacts
of the two variables were consistent. Odds of a correct
classification increased as heterogeneity decreased and as
patch size increased (Table 4). However, the estimated
coefficients and, accordingly, the estimated odds ratios vary
broadly among the land-cover classes for both landscape

Land-cover 21

heterogeneity 22
23
31'
32
33
41
42
43
81
82
85
91
92

Patch size 21

22
23
31

32
33
41'
42
43
81
82
85
91
92

-0.30

0.09

1.36
0.30

0.60

0.02

1.34
1.32

-0.52

0.12

0.74
0.58

0.18

2.62
~ 1.08

-2.44

-1.58

-2.54

-2.48

-1.45

-1.76

-0.86

-1.17

-0.78

-1.63

-t.l0

-1.65

-3.22

-0.07 0.76
-0.49 0.46
-0.55 0.47
-0.42 0.52
-0.67 0.39
-0.26 0.62
-0.77 0.38
-'-0.70 0.38
-0.07 0.74
-0.35 0.57
~0.57 0.46
-0.37 0.56
-0.41 0.53
-1.14 0.25

0.22 .1.06
0.55 .1.37
0.67 1.58
0.89 1.80
0.71 1.50
0.4\ 1.20
0.48 1.42
0.26 \.09
a.20 1.05
0.07 0.90
0.45 1.31
0.40 1.19

.0.36 1.19
1.28 2.82

variables.. This diversity of effects illustrates the land-cover
class specificity of the relationships between classification
accuracy and the landscape variables.

To illustrate the interpretation of the odds ratios for land-
cover heterogeneity, we focus on two Level II classes,
emergent herbaceous wetland (92) and transitional (33).
For the heterogeneity variable, emergent herbaceous wetland
had the smallest odds ratio, 0.32 (i.e. it was the most
sensitive to heterogeneity changes), while the transitional
class had the largest, 0.77 (i.e. it was the least sensitive).
Therefore, the odds of correctly classifying an emergent
herbaceous wetland pixel having a heterogeneity value of
2 would be 3.1 (1/0.32) times lower than the odds of
correctly classifying an interior (heterogeneity value of I)
emergent herbaceous wetland pixel. In contrast, the odds of
correctly classifying a transitional class pixel is only 1.3 (1/
0.77) times lower for the same change in heterogeneity.

Emergent herbaceous wetland was also the most sensitive
to changes in patch size, with an estimated odds ratio of3.6.
Accordingly, a~ patch ~ize increa~e~ from 100 to 1000 pixels
(an increase in the logarithm valueof2 to 3), the odds of the
pixel in the larger patch being correctly classified was 3.6
times higher than the pixel in the smaller patch. The class
least impacted by changes in patch size was the commerciaif

industrial/transportation class (23 ),which had an odds ratio
of 1.22.

The single-variable model results (Table 5) for Level I
follow a pattern similar to the Level II results. Both land-
cover heterogeneity and patch size were significant for all
five Level I classes and the expected relationships that the
odds of correct classification increase as patch size increases
and as heterogeneity decreases were found. At Level I, forest
(40) was most sensitive to heterogeneity, while the barren
class (30) was least sensitive to this variable. The barren
class also showed the least sensitivity to patch size, while
agriculture (80) was the most sensitive.

Relative importance of the two landscape variables was
evaluated by comparing Model 2 with Models la and lb.
Because of the correlation between the two landscape
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not statistically significant, while at Level I, it was significant
for only the urban class (20). The absence of a significant
interaction effect suggests that the effect of heterogeneity
remains the same regardless of the value of patch size and
vice versa. For the Level I urban class, the effect of hetero-
geneity would vary depending on the size of the patch in
which the sample pixel is located.

The final two model comparisons evaluate the importance
of the set of regional dummy variables relative to the two

landscape variables. For all classes at both classification
levels, the marginal contribution of the landscape variables
was statistically significant when adjusted for the effect
shared by the regional variables (Model 4 vs. Model 5).
Consequently, the effects of the landscape variables cannot
be dismissed as resulting from a confounding effect attrib-
utable to their association with regional variation. Con-
yersely, the set of regional dummy variables did not
provide a significant marginal contribution when adjusted
for the landscape variables (Model 2 versus Model 5)in four
of the Level II classes, transitional (33), deciduous forest
(41) and both wetland classes (91,92) and two of the Level I
classes, urban (20) and forest (40). For these classes, no
additional explanatory ability pertaining to accuracy is
obtained from the regional variables once they have been
adjusted for the landscape variables. The regional variables
were statistically important for all of the other classes,
suggesting that some of the variability in classification
accuracy not explainable by the landscape .variables can be
attributed to characteristics associated with the different

regIons.

variables {see Table 2), the ..relative importance of each
variable must be assessed by testing its marginal contribu-
tion adjusted for explanatory ability shared with the other
variable (Table 6). The marginal contribution of hetero-
geneity adjusted for patch size was not statistically signifi-
cant for the following Level II classes: low density
residential (21), high density residential (22), bare rock
(31), transitional (33), mixed forest (43) and both wetland
classes (91, 92). For these same classes, the marginal
contribution of patch size was statistically significant when
adjusted for the presence of heterogeneity in the model.
This suggests that patch size may be the more important of
the two explanatory variables for these classes and a single-
variable model using only patch size is as good a model as
the two-variable model. For evergreen forest (42), pasturef
hay (81) and urban/recreational grass (85), heterogeneity
appeared to be the more important variable, since it
remained significant in the presence of patch size, but the
marginal contribution of patch size adjusted for heteroge-
neity was not statistically significant. For the remaining
Level II classes, commercial/industrial (23), quarries/strip
mines (32), deciduous forest (41), and row crops (82), the
marginal contributions of both landscape variables were
statistically significant when adjusted for the influence of
the other variable. This characteristic was also the case for
all five Level I classes: both landscape variables were
needed in the model.

Comparing Model 2 with Model 3 evaluates whether the
patch size by land-cover heterogeneity interaction term was
required in the model. For all Levelllclasses, this term was

Table 6
Chi -square analysis of model comparisons

Mode! O-Mode! 2 2

Model la-MOde! 2 1

Mode! Ib-Mode! 2 1

Model 2-MOdel 3 I

Model 4-Model 5 2

Mode! 2-Model 5 4

7.56
ns
7.14
ns
]0.89
22.74

25.82
ns
13.04
ns
12.38
20.58

41.49
ns
27.08
ns
29.76
37.87

37.48
11.79
6.62
ns
41.46
20.4

13.27 83.08 33.31 7.57 13.96 37.89 17.51 17.89 195.22
ns 21.81 24.66 ns 13.34 10.99 4.57 ns ns
7.64 17.36 ns 7.22 ns 9.19 ns 4.18 82.13
ns ns ns ns ns ns ns ns ns
14.73 83.51. 32.37 12.28 19.79 27.44 7.52 14.52 150.68
ns ns 38.45 68.57 20.31 98.95 14.31 ns ns

Model comparison Degrees of Level I land-cover class
freedom

30 40 80 90
-,~-~-

Model O~Model 2 2
Mode! la-Model 2 l

Modellb~Model 2 ..I
Model 2-Model 3 I
Model 4-Model 5 2
Model 2-Mode\ 5 4

~ 

~
177.5r 86.53 199.29 275.73 153.23
21.82 15.14 80.55 66.7 5.()3
79.02 27.15 32.07 68.45 74.31
12.99 ns ns ns ns
170.84 80.5 194.11 282.24 135.9
ns 15.57 ns 17.39 9.82

ns-not significant at 7=0.05 significant level.

Explanation of difference tests: (a) Model 0-ModeI2: Is the joint contribution of patch size and heterogeneity significant? (b) Model Ib-Model 2: Is the
additional explanatory contribution of patch size to a mode! already containing heterogeneity significant? (c) Model la-Model 2: Is the additional explanatory

contribution of heterogeneity to a model already containing patch size significant? (d) Model 2-Model 3: Does the intemction between patch size and
heterogeneity contribute significant explanatory value? (e) Model4-Model 5: Is the additional explanatory contribution of the landscape variables to a model
already containing the regional dummy variables statistically significant? (t) Mode! 2-Model 5: Is the additional explanatory contribution of the regional
variables to a model already containing the landscape variables statistically significant?

51.32
6.89
19.52
ns
54.71
21.38
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4. Conclusions fication error using readily available explanatory variables
such as landscape structure. Such models may serve as a
simple method for creating maps qualitatively representative
of classification error in the NLCD. The results reported in
this study not only provide insight into factors associated
with classification error, they also serve as an important
intern1ediate step in the development of a predictive capacity
for modeling error.
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